Groupe de travail des éphémères - MAP5

Rayane Mouhli

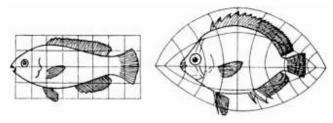
Joint work with Barbara Gris and Irène Kaltenmark

Université Paris Cité (MAP5) & Sorbonne Université (LJLL)

Introduction to computational anatomy

Main idea: Modelize and analyze the variability of biological shapes.

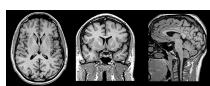
Computational anatomy introduced by the biologist D'Arcy Thompson (1917) in "On Growth and Form"



On Growth and Form - D'Arcy Thompson

Different types of data

Introduction to computational anatomy



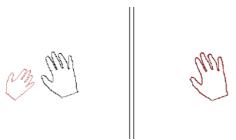
Images

Meshed surfaces

Curves

Registration/Matching

Given two objects $q^{(0)}, q^{(1)}$, we want to find the best diffeomorphism that transform the source $q^{(0)}$ into the target $q^{(1)}$.



Robust Rigid Shape Registration Method Using a Level Set Formulation - M.Al-Huseiny, S.Mahmoodi, M.Nixon

Large Deformation Diffeomorphic Metric Mapping¹

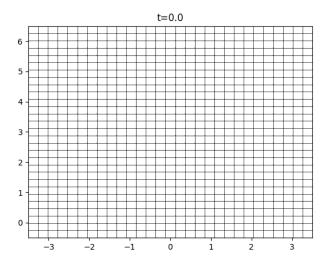
$\mathsf{Theorem}$

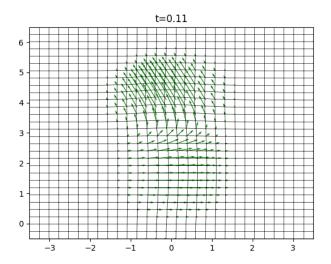
Let $v \in L^2([0,1],V)$ be a time-varying vector field with $V \hookrightarrow \mathcal{C}^2_0(\mathbb{R}^d,\mathbb{R}^d)$. The flow of diffeomorphism φ^v generated by v is the unique solution of :

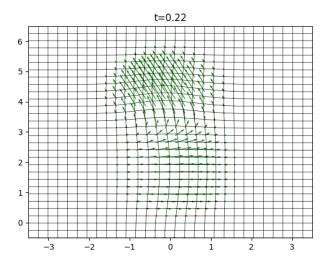
$$\begin{cases} \dot{\varphi}_t^v = v_t \circ \varphi_t^v \\ \varphi_0^v = \mathrm{id} \end{cases}$$

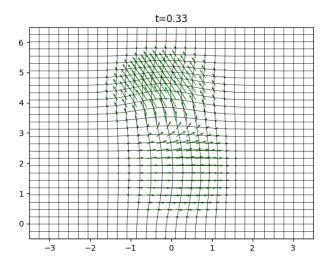
¹Beg, Miller, Trouvé, Younes 2005

Ravane Mouhli February 21st. 2025 Decorrelation of vector fields

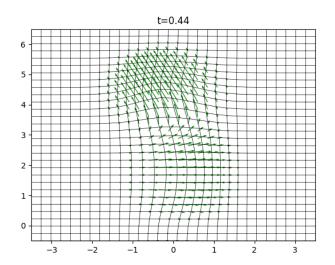


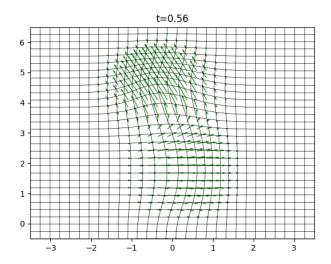


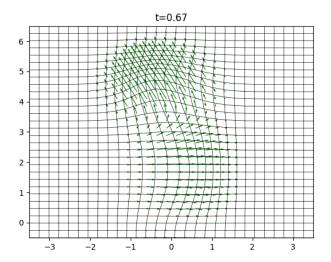




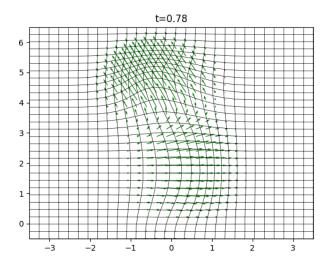
Diffeomorphism generated by a vector field



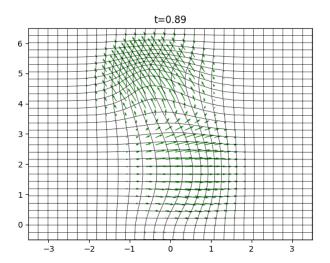


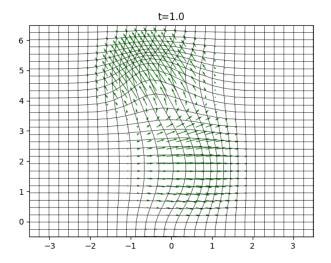


Diffeomorphism generated by a vector field



Diffeomorphism generated by a vector field





Shape dynamic

The deformed source is defined by the action of a diffeomorphism on the source

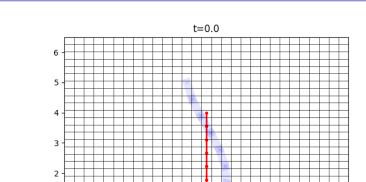
$$q_t = \varphi_t \cdot q^{(0)}$$

From the dynamic of the diffeomorphism, we deduce the dynamic of the deformed shape :

$$\begin{cases} \dot{q}_t &= v_t \cdot q_t \\ q_0 &= q^{(0)} \end{cases}$$

Rayane Mouhli

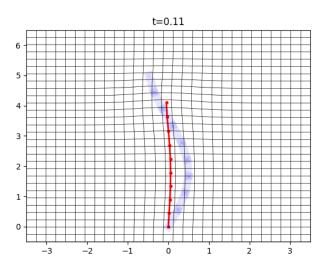
1



0 - - - - - 1 0 1 2 3

Rayane Mouhli Decorrelation of vector fields February 21st, 2025 8 / 33

Shape deformation



2

3

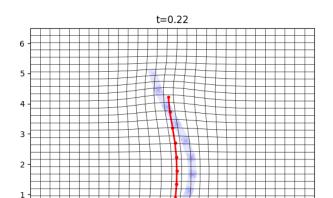
8 / 33

0

-3

-2

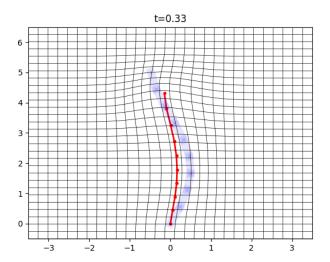
-1



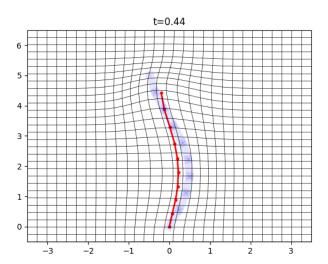
Rayane Mouhli Decorrelation of vector fields February 21st, 2025

0

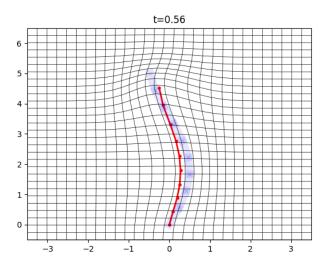
Shape deformation



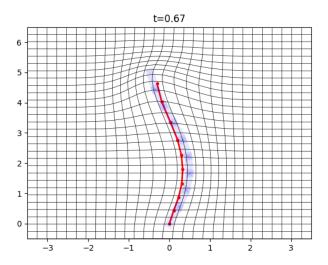
Shape deformation



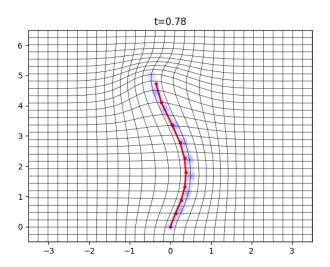
Shape deformation



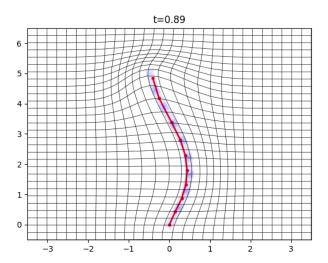
Shape deformation

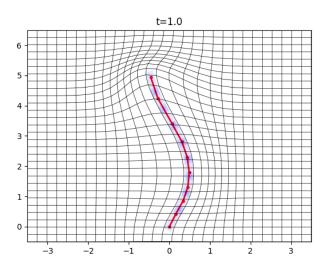


Shape deformation



Shape deformation

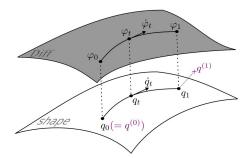




LDDMM: Inexact matching

Shape registration corresponds to the following energy minimization problem:

$$\min_{v} E(v) = \int_0^1 \frac{1}{2} |v_t|_V^2 dt + D(\varphi_1 \cdot q^{(0)}, q^{(1)})$$
subject to
$$\begin{cases} \dot{q}_t &= v_t \cdot q_t \\ q_0 &= q^{(0)} \end{cases}$$



Ravane Mouhli February 21st, 2025 Decorrelation of vector fields

Coupling two types of deformations

Let $v \in L^2([0,1],V), w \in L^2([0,1],W)$ be two vector fields and ψ its associated diffeomorphism.

$$\dot{\psi}_t = (v_t + w_t) \cdot \psi_t$$
 s.t $\psi_0 = \mathrm{id}$

Given a source $q^{(0)}$, the deformed shape $q_t = \psi_t(q^{(0)})$ follows the dynamic

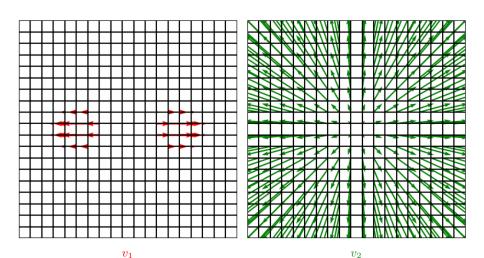
$$\dot{q}_t = v_t \cdot q_t + w_t \cdot q_t$$

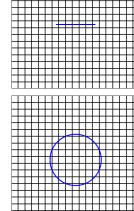
The energy minimization problem associated is

$$\min_{v,w \in L^2([0,1],V \times W)} E(v,w) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \mathcal{A}(q_1)$$

where $\mathcal{A}:Q\to\mathbb{R}$ is a data attachment term

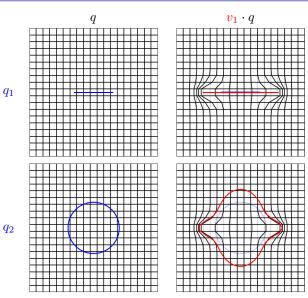
Ravane Mouhli



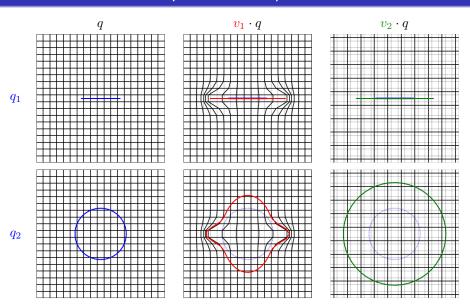


 q_2

Rayane Mouhli



Rayane Mouhli



Rayane Mouhli

Decorrelation of vector fields

February 21st, 2025

We define the correlation with respect to a shape q between a vector field $v \in V$ and a space of vector fields W by

$$\operatorname{Corr}_q(v,W) = \|w^*\|_W$$

where

$$w^* = \operatorname*{argmin}_{w \in W} \|\delta \mu_q(v) - \delta \mu_q(w)\|_{\mathcal{W}}^2 + \lambda \|w\|_W^2$$

and $\mathcal{W} \hookrightarrow C_0^1(\mathbb{R}^d, \mathbb{R}^d)$ is a Reproducing Kernel Hilbert Space

Varifold

Definition

A varifold is a continuous linear form on $\Omega = \{\omega : \mathbb{R}^d \times \mathbb{S}^{d-1} \to \mathbb{R}\}.$ The varifold μ_q associated to the shape $q:X\to\mathbb{R}^d$ is defined by :

$$\mu_q(\omega) = \int_X \omega(x, \vec{t}(x)) dx$$

where \vec{t} represents a tangent/normal vector to the curve/surface.

A discrete curve can be modeled by a varifold

$$\mu_q(\omega) = \sum_{(f^1, f^2) \in F} \|q_{f^2} - q_{f^1}\| \ \omega(c(q_f), \vec{t}(q_f))$$

where $c(q_f) = \frac{q_{f^1} + q_{f^2}}{2}$ and $\overrightarrow{t}(q_f) = \frac{q_{f^2} - q_{f^1}}{\|q_{f^2} - q_{f^1}\|}$.

Ravane Mouhli

Proposition

Given a RKHS $\mathcal{W} \hookrightarrow C_0^0(\mathbb{R}^d \times \mathbb{S}^{d-1})$ generated by a kernel $k_{\mathcal{W}} = k_E \otimes k_T$ and two curves q_a and q_b represented by $\mu_{q_a}, \mu_{q_b} \in W'$, there exists a scalar product $\langle \mu_{q_a}, \mu_{q_b} \rangle$.

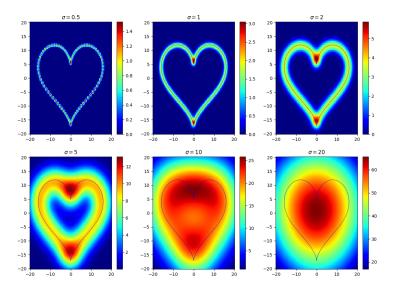
Proposition

The action of a diffeomorphism on a varifold is defined by

$$(\phi_*\mu_q)(\omega) = \mu_{\phi(q)}(\omega) = \sum_{(f^1, f^2) \in F} \|\phi(q_{f^2}) - \phi(q_{f^1})\| \ \omega \left(c(\phi(q_f)), \vec{t}(\phi(q_f))\right)$$

Ravane Mouhli

Gaussian kernel on the positions



Kernels on the tangent

Data type	$\gamma(\langle\overrightarrow{t_{x}},\overrightarrow{t_{y}}\rangle)$	$\gamma(u)$
Currents	$\langle \overrightarrow{t_x}, \overrightarrow{t_y} angle$	и
(unoriented) Varifolds	$\langle \overrightarrow{t_x}, \overrightarrow{t_y} \rangle^2$	u^2
Oriented Varifolds	$\exp\left(rac{-\ \overrightarrow{t_x}-\overrightarrow{t_y}\ ^2}{\sigma_T^2} ight)$	$\exp\left(\frac{2u-2}{\sigma_T^2}\right)$

Orientation alignment

Ravane Mouhli

Decorrelation of vector fields

February 21st, 2025

Speed of a varifold induced by a vector field

Theorem (Charon, Trouvé 2013)

Let $t\mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0=\mathrm{id}$ and $\dot{\phi}_t|_{t=0}=v$

$$\begin{split} \frac{d}{dt}\Big|_{t=0}\mu_{\phi_{t}(q)}(\omega) & = & \sum_{(f^{1},f^{2})\in F} \frac{\langle v(q_{f^{2}})-v(q_{f^{1}}),q_{f^{1}}-q_{f^{2}}\rangle}{\|q_{f^{1}}-q_{f^{2}}\|} \; \omega(c(q_{f}),\vec{t}(q_{f})) \\ & + & \|q_{f^{1}}-q_{f^{2}}\| \; \Big(\partial_{x}\omega(c(q_{f}),\vec{t}(q_{f}))\Big| v(c(q_{f}))\Big) \\ & + & \|q_{f^{1}}-q_{f^{2}}\| \; \Big(\partial_{\vec{t}}\omega(c(q_{f}),\vec{t}(q_{f}))\Big| \nabla^{\perp}v(q_{f})\Big) \end{split}$$

where
$$\nabla^{\perp}v(q_f) = rac{v(q_f2) - v(q_f1)}{\|q_f1 - q_f2\|} - \left(rac{v(q_f2) - v(q_f1)}{\|q_f1 - q_f2\|} \cdot \overrightarrow{t}(q_f)
ight) \overrightarrow{t}(q_f)$$

In the following, we will denote $\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}$ as $\delta\mu_q(v)$

00000000000

Theorem (Charon, Trouvé 2013)

Let $t \mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0 = \mathrm{id}$ and $\phi_t|_{t=0} = v$

$$\frac{d}{dt}\Big|_{t=0}\mu_{\phi_{t}(q)}(\omega) = \sum_{(f^{1},f^{2})\in F} \frac{\langle v(q_{f^{2}}) - v(q_{f^{1}}), q_{f^{1}} - q_{f^{2}}\rangle}{\|q_{f^{1}} - q_{f^{2}}\|} \omega(c(q_{f}), \vec{t}(q_{f}))
+ \|q_{f^{1}} - q_{f^{2}}\| \left(\partial_{x}\omega(c(q_{f}), \vec{t}(q_{f}))\middle|v(c(q_{f}))\right)
+ \|q_{f^{1}} - q_{f^{2}}\| \left(\partial_{\vec{t}}\omega(c(q_{f}), \vec{t}(q_{f}))\middle|\nabla^{\perp}v(q_{f})\right)$$

where
$$\nabla^{\perp}v(q_f) = \frac{v(q_{f^2}) - v(q_{f^1})}{\|q_{f^1} - q_{f^2}\|} - \left(\frac{v(q_{f^2}) - v(q_{f^1})}{\|q_{f^1} - q_{f^2}\|} \cdot \overrightarrow{t}(q_f)\right) \overrightarrow{t}(q_f)$$

In the following, we will denote $\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}$ as $\delta\mu_q(v)$

Theorem (Charon, Trouvé 2013)

Let $t\mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0=\mathrm{id}$ and $\dot{\phi}_t|_{t=0}=v$

$$\begin{split} \frac{d}{dt}\Big|_{t=0}\mu_{\phi_{t}(q)}(\omega) &= \sum_{(f^{1},f^{2})\in F} \frac{\langle v(q_{f^{2}})-v(q_{f^{1}}),q_{f^{1}}-q_{f^{2}}\rangle}{\|q_{f^{1}}-q_{f^{2}}\|} \; \omega(c(q_{f}),\vec{t}(q_{f})) \\ &+ \; \|q_{f^{1}}-q_{f^{2}}\| \; \left(\frac{\partial_{x}\omega(c(q_{f}),\vec{t}(q_{f}))}{|v(c(q_{f}))|} |v(c(q_{f})) \right) \\ &+ \; \|q_{f^{1}}-q_{f^{2}}\| \; \left(\frac{\partial_{t}\omega(c(q_{f}),\vec{t}(q_{f}))}{|v(c(q_{f}))|} |\nabla^{\perp}v(q_{f}) \right) \end{split}$$

where $\nabla^{\perp}v(q_f) = \frac{v(q_{f^2}) - v(q_{f^1})}{\|q_{f^1} - q_{f^2}\|} - \left(\frac{v(q_{f^2}) - v(q_{f^1})}{\|q_{f^1} - q_{f^2}\|} \cdot \overrightarrow{t}(q_f)\right) \overrightarrow{t}(q_f)$

In the following, we will denote $\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}$ as $\delta\mu_q(v)$

Theorem (Charon, Trouvé 2013)

Let $t\mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0=\mathrm{id}$ and $\dot{\phi}_t|_{t=0}=v$

$$\begin{split} \frac{d}{dt}\Big|_{t=0}\mu_{\phi_{t}(q)}(\omega) &= \sum_{(f^{1},f^{2})\in F} \frac{\langle v(q_{f^{2}})-v(q_{f^{1}}),q_{f^{1}}-q_{f^{2}}\rangle}{\|q_{f^{1}}-q_{f^{2}}\|} \; \omega(c(q_{f}),\vec{t}(q_{f})) \\ &+ \; \|q_{f^{1}}-q_{f^{2}}\| \; \Big(\partial_{x}\omega(c(q_{f}),\vec{t}(q_{f}))\Big| v(c(q_{f}))\Big) \\ &+ \; \|q_{f^{1}}-q_{f^{2}}\| \; \Big(\partial_{\vec{t}}\omega(c(q_{f}),\vec{t}(q_{f}))\Big| \nabla^{\perp}v(q_{f})\Big) \end{split}$$

where
$$\nabla^{\perp}v(q_f) = \frac{v(q_f^2) - v(q_f^1)}{\|q_f^1 - q_f^2\|} - \left(\frac{v(q_f^2) - v(q_f^1)}{\|q_f^1 - q_f^2\|} \cdot \overrightarrow{t}(q_f)\right) \overrightarrow{t}(q_f)$$

In the following, we will denote $\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}$ as $\delta\mu_q(v)$

Correlation with respect to a shape

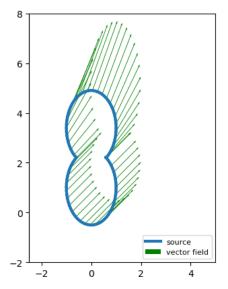
We define the correlation with respect to a shape q between a vector field $v \in V$ and a space of vector fields W by

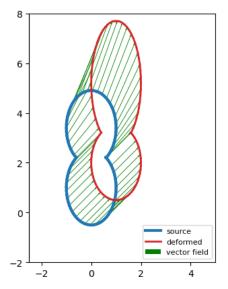
$$\operatorname{Corr}_q(v,W) = \|w^*\|_W$$

where

$$w^* = \operatorname*{argmin}_{w \in W} \|\delta \mu_q(v) - \delta \mu_q(w)\|_{\mathcal{W}}^2 + \lambda \|w\|_W^2$$

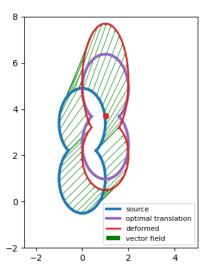
and $\mathcal{W}\hookrightarrow C^1_0(\mathbb{R}^d,\mathbb{R}^d)$ is a Reproducing Kernel Hilbert Space





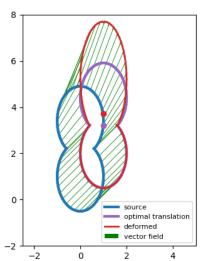
Influence of σ : $k(r)=e^{-r^2/\sigma^2}$

sigma corr = 0.01 | Correlation = 1.7828



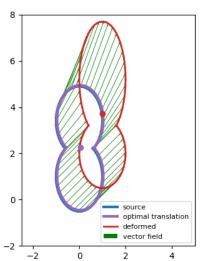
Influence of σ : $k(r)=e^{-r^2/\sigma^2}$

sigma corr = 4.0 | Correlation = 1.4175



Influence of σ : $k(r)=e^{-r^2/\sigma^2}$

sigma corr = 1000.0 | Correlation = 0.0515



Dynamic generated by two vector fields

Given V, W two spaces of vector fields, we are interested in the following energy-minimization problem

$$\min_{\substack{(v,w) \in L^2([0,1],V \times W) \\ \text{s.t} } } E(v,w) &= \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \mathcal{A}(q_1)$$

where $\mathcal{A}:\mathcal{Q}\to\mathbb{R}$ is a data attachment term.

Different approaches in the litterature :

- Multiscale kernel bundle, sum of gaussian kernel : Sommer et al. 2013, Risser 2011
- Semidirect product : Bruveris et al. (2010, 2012)
- Hierarchical model : Pierron et al. 2024

Direct model

We consider the flow of diffeomorphism ψ generated by $(v,w)\in L^2([0,1],V\times W)$

$$\dot{\psi}_t = (v_t + w_t) \circ \psi_t$$
 where $\psi_0 = \mathrm{id}$

Considering the deformed shape $q_t=\psi_t(q^{(0)})$ the energy minimization problem is equivalent to

$$\min_{p_0} E(p_0) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \mathcal{A}(q_1)$$
 s.t
$$\begin{cases} \dot{q}_t &= \xi_{q_t}^V(v_t) + \xi_{q_t}^W(w_t) \\ \dot{p}_t &= -(\partial_q \xi_{q_t}^V(v_t) + \partial_q \xi_{q_t}^W(w_t))^* p_t \\ v_t &= K_V \xi_{q_t}^{V*} p_t \\ w_t &= K_W \xi_{q_t}^{W*} p_t \end{cases}$$

where $\xi^{V}_{q_t}(v_t)=v_t\cdot q_t$, $\xi^{W}_{q_t}(w_t)=w_t\cdot q_t$ and $p_t\in T^*_{q_t}Q$

Direct model

We consider the flow of diffeomorphism ψ generated by $(v,w) \in L^2([0,1],V\times W)$

$$\dot{\psi}_t = (v_t + w_t) \circ \psi_t$$
 where $\psi_0 = \mathrm{id}$

Considering the deformed shape $q_t = \psi_t(q^{(0)})$ the energy minimization problem is equivalent to

$$\min_{\mathbf{p}_0} E(\mathbf{p}_0) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \mathcal{A}(q_1)$$
s.t
$$\begin{cases} \dot{q}_t &= \xi_{q_t}^V(v_t) + \xi_{q_t}^W(w_t) \\ \dot{\mathbf{p}}_t &= -(\partial_q \xi_{q_t}^V(v_t) + \partial_q \xi_{q_t}^W(w_t))^* \mathbf{p}_t \\ v_t &= K_V \xi_{q_t}^{V*} \mathbf{p}_t \\ w_t &= K_W \xi_{q_t}^{W*} \mathbf{p}_t \end{cases}$$

where $\xi_{q_t}^V(v_t) = v_t \cdot q_t$, $\xi_{q_t}^W(w_t) = w_t \cdot q_t$ and $p_t \in T_q^* Q$

Ravane Mouhli February 21st. 2025 Decorrelation of vector fields

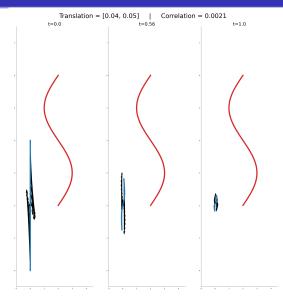
Direct model

We penalize the energy with the correlation to define a new problem.

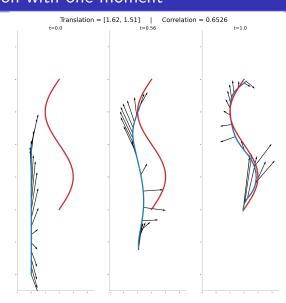
$$\min_{\mathbf{p}_0} E(\mathbf{p}_0) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}(v_t, W)^2 dt + \mathcal{A}(q_1)$$
 s.t
$$\begin{cases} \dot{q}_t &= \xi_{q_t}^V(v_t) + \xi_{q_t}^W(w_t) \\ \dot{p}_t &= -(\partial_q \xi_{q_t}^V(v_t) + \partial_q \xi_{q_t}^W(w_t))^* \mathbf{p}_t \\ v_t &= K_V \xi_{q_t}^{V*} \mathbf{p}_t \\ w_t &= K_W \xi_{q_t}^{W*} \mathbf{p}_t \end{cases}$$

where $\xi_{q_t}^V(v_t)=v_t\cdot q_t$, $\xi_{q_t}^W(w_t)=w_t\cdot q_t$ and $p_t\in T_{q_t}^*Q$.

Decorrelation with one moment



Decorrelation with one moment



Rayane Mouhli Decorrelation of vector fields February 21st, 2025

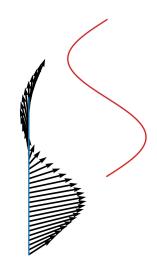
24 / 33

Direct model

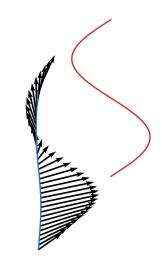
Considering the partial gradient of E(v, w), we can define a new problem parameterized by two moments $(p_t^V, p_t^W) \in T_{q_t}^* Q \times T_{q_t}^* Q$.

where $\xi_{q_t}^V(v_t) = v_t \cdot q_t$, $\xi_{q_t}^W(w_t) = w_t \cdot q_t$.

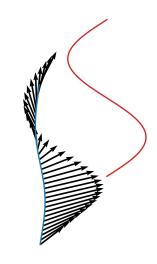
Translation = [1.44, 1.4] Correlation = 8.6758

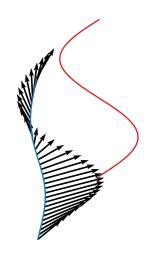


Translation = [1.44, 1.4] Correlation = 8.6758 t=0.07



Translation = [1.44, 1.4] Correlation = 8.6758 t=0.14

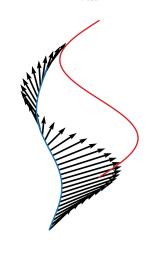




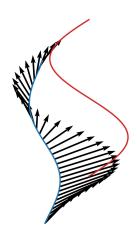
Translation = [1.44, 1.4] Correlation = 8.6758 $_{t=0.29}$



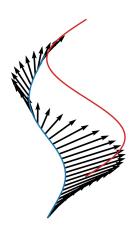
Translation = [1.44, 1.4] Correlation = 8.6758 t=0.36



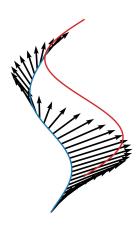
Translation = [1.44, 1.4] Correlation = 8.6758 t=0.43



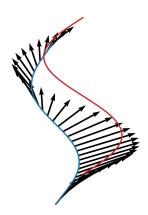
Translation = [1.44, 1.4] Correlation = 8.6758 t=0.5



Translation = [1.44, 1.4] Correlation = 8.6758

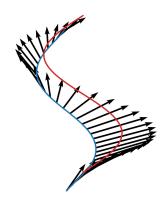


Translation = [1.44, 1.4]Correlation = 8.6758t=0.64

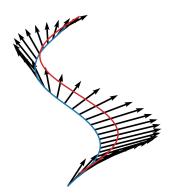


Translation = [1.44, 1.4]Correlation = 8.6758t=0.71

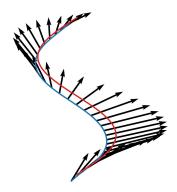
Translation = [1.44, 1.4] Correlation = 8.6758 $_{t=0.79}$



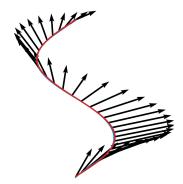
Translation = $\begin{bmatrix} 1.44, 1.4 \end{bmatrix}$ Correlation = 8.6758

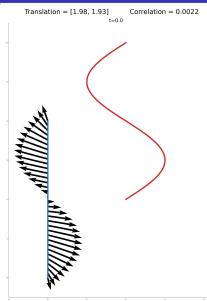


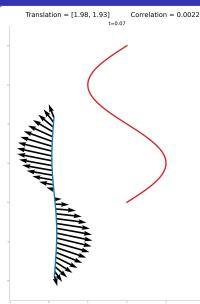
Translation = [1.44, 1.4] Correlation = 8.6758

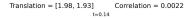


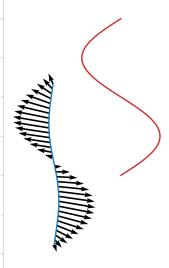
Translation = [1.44, 1.4]Correlation = 8.6758t=1.0

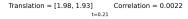


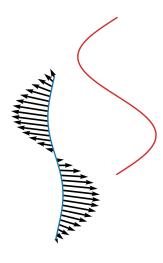


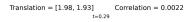


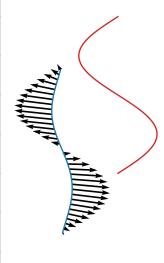


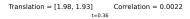


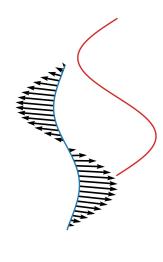


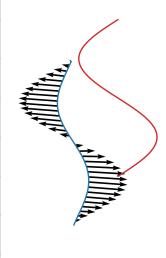


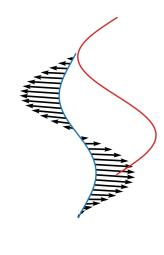


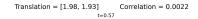


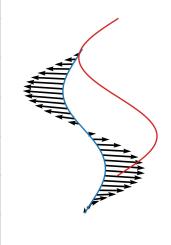




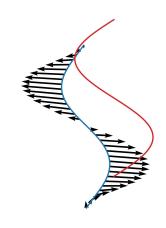




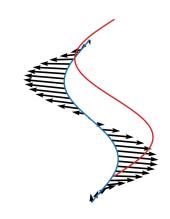


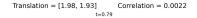


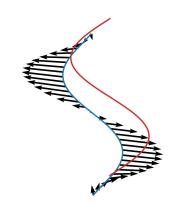
Translation = [1.98, 1.93]Correlation = 0.0022t=0.64



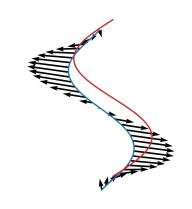
Translation = [1.98, 1.93] Correlation = 0.0022

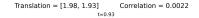




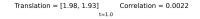


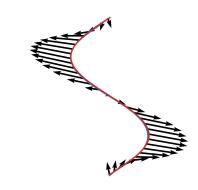
Translation = [1.98, 1.93]Correlation = 0.0022t=0.86











Semidirect model (joint work with Thomas Pierron)

Let G be a finite dimensional Lie group and $\mathfrak g$ its Lie algebra. We denote $\alpha_g(\varphi)$ the action of G on $\mathrm{Diff}_{C^k_0}(\mathbb R^d)$.

We consider the semidirect product $\mathcal{G}=G\ltimes \mathrm{Diff}_{C_0^k}(\mathbb{R}^d)$ and we assume it acts on Q as follow :

$$(g,\varphi) \cdot q = g \cdot (\varphi \cdot q)$$

Example : If $G=\mathbb{R}^d$, then $\alpha_T(\varphi)(x)=\varphi(x+T)-T$ and $(T,\varphi)\cdot q=\varphi(q)+T$.

Rayane Mouhli

Semidirect model

The minimization problem associated to the semidirect model is

$$\min_{p_0} E(p_0) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |X_t|_{\mathfrak{g}}^2 dt + \mathcal{A}(q_1)$$
 s.t
$$\begin{cases} \dot{q}_t &= v_t \cdot q_t + X_t \cdot q_t \\ \dot{p}_t &= -(\partial_q \xi_{q_t}^V(v_t) + \partial_q \xi_{q_t}^{\mathfrak{g}}(X_t))^* p_t \\ v_t &= K_V \xi_{q_t}^{V*} p_t \\ X_t &= K_{\mathfrak{g}} \xi_{q_t}^{\mathfrak{g}*} p_t \end{cases}$$

where $\xi_a^{\mathfrak{g}}(X_t) = X_t \cdot q_t$ and $p_t \in T_a^* Q$

Semidirect model

The minimization problem associated to the semidirect model is

$$\min_{\mathbf{p_0}} E(\mathbf{p_0}) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |X_t|_{\mathfrak{g}}^2 dt + \mathcal{A}(q_1)$$
 s.t
$$\begin{cases} \dot{q}_t &= v_t \cdot q_t + X_t \cdot q_t \\ \dot{\mathbf{p_t}} &= -(\partial_q \xi_{q_t}^V(v_t) + \partial_q \xi_{q_t}^{\mathfrak{g}}(X_t))^* \mathbf{p_t} \\ v_t &= K_V \xi_{q_t}^{V*} \mathbf{p_t} \\ X_t &= K_{\mathfrak{g}} \xi_{q_t}^{\mathfrak{g}*} \mathbf{p_t} \end{cases}$$

where $\xi_a^{\mathfrak{g}}(X_t) = X_t \cdot q_t$ and $p_t \in T_a^* Q$

We define a new shape $\tilde{q} = g^{-1} \cdot q$, in particular the deformation of \tilde{q} is

$$\tilde{q}_t = \varphi_t \cdot q^{(0)}$$

Considering the augmented shape space $G \times Q$ and a new data attachment term

$$\tilde{\mathcal{A}}(g, \tilde{q}) = \mathcal{A}(g \cdot \tilde{q}) = \mathcal{A}(q)$$

will allow us to consider two moments $p^{\mathfrak{g}} \in T^*G$ and $\tilde{p} \in T^*Q$.

Semidirect model

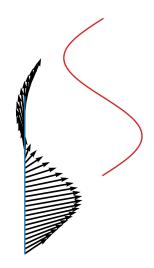
The minimization energy problem can be written with two moments $(\tilde{p}_t, p_t^{\mathfrak{g}}) \in T_{\tilde{a}_t}^* Q \times T_{a_t}^* G$:

$$\begin{split} \min_{\tilde{p}_0,p_0^{\mathfrak{g}}} E(\tilde{p}_0,p_0^{\mathfrak{g}}) &= \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |X_t|_{\mathfrak{g}}^2 dt + \lambda \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}(v_t,\mathfrak{g})^2 dt + \tilde{\mathcal{A}}(g_1,\tilde{q}_1) \\ \\ \text{s.t} & \begin{cases} \dot{g}_t &= X_t \cdot g_t \\ \dot{\tilde{q}}_t &= d_{\mathrm{id}}\alpha_{g_t}(v_t) \cdot \tilde{q}_t \\ \dot{\tilde{p}}_t^i &= -(\partial_q \xi_{\tilde{q}_t}^{\tilde{q}}(d_{\mathrm{id}}\alpha_{g_t}(v_t))^* \tilde{p}_t \\ \dot{p}_t^{\mathfrak{g}} &= -(\partial_g \xi_{\mathfrak{g}_t}^{\mathfrak{g}}(X_t))^* p_t^{\mathfrak{g}} - (\partial_g \xi_{\tilde{q}_t}^{\tilde{q}}(d_{\mathrm{id}}\alpha_{g_t}(v_t)))^* \tilde{p}_t \\ v_t &= K_V (\xi_{\tilde{q}_t}^{\tilde{q}} d_{\mathrm{id}}\alpha_{g_t})^* \tilde{p}_t \\ X_t &= K_{\mathfrak{g}} \xi_{\mathfrak{g}_t}^{\mathfrak{g}_t} p_t^{\mathfrak{g}} \end{split}$$

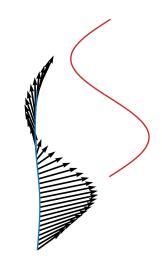
where $\xi_{g_t}^{\mathfrak{g}}(X_t) = X_t g_t$

Ravane Mouhli

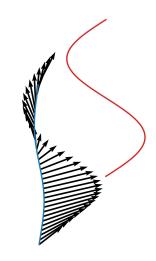
Translation = [1.44, 1.4] Correlation = 8.5585



Translation = [1.44, 1.4] Correlation = 8.5585 t=0.07



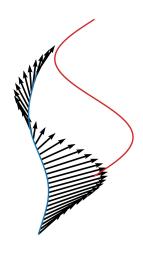
Translation = [1.44, 1.4]Correlation = 8.5585 t=0.14



Translation = $\begin{bmatrix} 1.44, 1.4 \end{bmatrix}$ Correlation = 8.5585

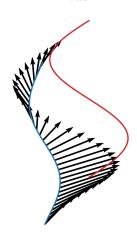


Translation = [1.44, 1.4]Correlation = 8.5585 t=0.29

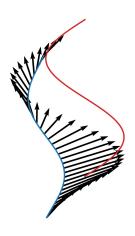


Translation = $\begin{bmatrix} 1.44, 1.4 \end{bmatrix}$ Correlation = 8.5585

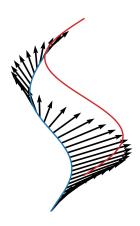
Translation = [1.44, 1.4] Correlation = 8.5585 $_{t=0.43}$



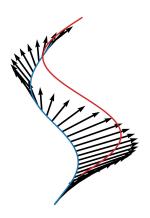
Translation = [1.44, 1.4] Correlation = 8.5585



Translation = [1.44, 1.4] Correlation = 8.5585 $_{t=0.57}$

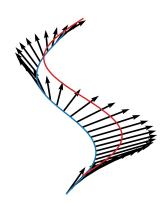


Translation = [1.44, 1.4] Correlation =
$$8.5585$$

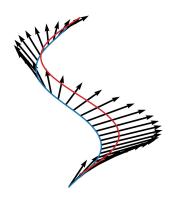


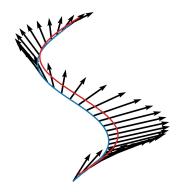
Translation = [1.44, 1.4]Correlation = 8.5585 t=0.71

Translation = $\begin{bmatrix} 1.44, 1.4 \end{bmatrix}$ Correlation = 8.5585

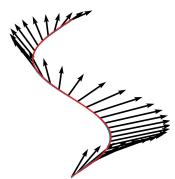


Translation = [1.44, 1.4] Correlation = 8.5585

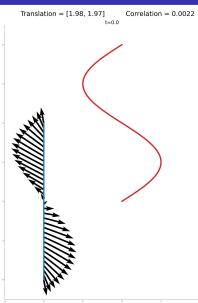


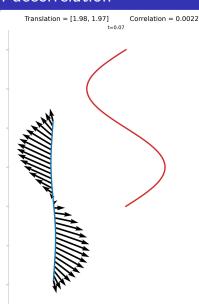


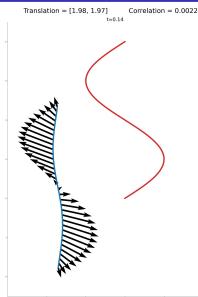
Correlation = 8,5585 Translation = [1.44, 1.4]t=1.0



Semidirect with decorrelation

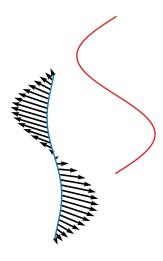


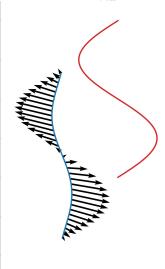




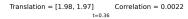
Semidirect with decorrelation

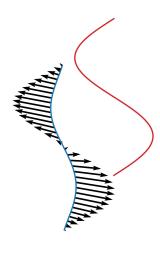


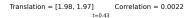


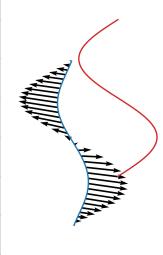


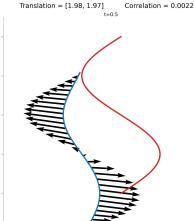
Semidirect with decorrelation

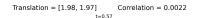


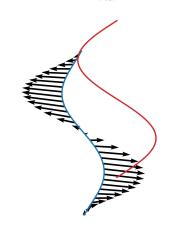




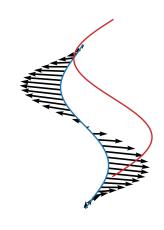


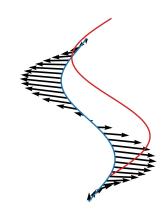




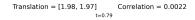


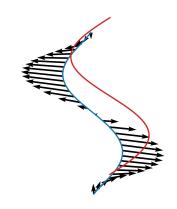


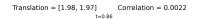


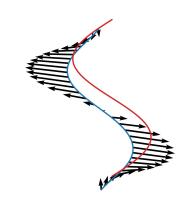


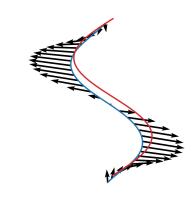
Semidirect with decorrelation



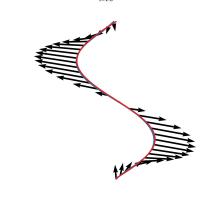








Translation = [1.98, 1.97]Correlation = 0.0022t=1.0



References

- [1] Nicolas Charon and Alain Trouvé. The varifold representation of nonoriented shapes for diffeomorphic registration. *SIAM Journal on Imaging Sciences*, 6(4):2547–2580, January 2013.
- [2] Thomas Pierron and Alain Trouvé. The graded group action framework for sub-riemannian orbit models in shape spaces, 2024.
- [3] Sylvain Arguillère. The general setting for shape analysis, 2015.
- [4] Martins Bruveris, Laurent Risser, and François-Xavier Vialard. Mixture of kernels and iterated semidirect product of diffeomorphisms groups. Multiscale Modeling amp; Simulation, 10(4):1344–1368, January 2012.
- [5] M. Bruveris, F. Gay-Balmaz, D. D. Holm, and T. S. Ratiu. The momentum map representation of images. *Journal of Nonlinear Science*, 21(1):115–150, September 2010.
- [6] Mirza Faisal Beg, Michael Miller, Alain Trouvé, and Laurent Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. *International Journal of Computer Vision*, 61:139–157, 02 2005.
- [7] Laurent Risser, François-Xavier Vialard, Robin Wolz, Darryl Holm, and Daniel Rueckert. Simultaneous fine and coarse diffeomorphic registration: Application to atrophy measurement in alzheimer's disease. volume 13, pages 610–7, 09 2010.
- [8] Irene Kaltenmark, Benjamin Charlier, and Nicolas Charon. A general framework for curve and surface comparison and registration with oriented varifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
- [9] Barbara Gris, Stanley Durrleman, and Alain Trouvé. A sub-Riemannian modular approach for diffeomorphic deformations. In 2nd conference on Geometric Science of Information, Paris-Saclay, France, October 2015.
- [10] Stefan Horst Sommer, Francois Bernard Lauze, Mads Nielsen, and Xavier Pennec. Sparse multi-scale diffeomorphic registration: the kernel bundle framework. *Journal of Mathematical Imaging and Vision*, 46(3):292–308, 2013.