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LDDMM (Beg, Miller, Trouvé, Younes 2005)

Let v ∈ L2([0, 1], V ) be a time-varying vector field where V ↪→ C2
0(Rd,Rd).

The flow of diffeomorphism φv generated by v is the unique solution of :

φ̇v
t = vt ◦ φv

t s.t φv
0 = id

Shape registration corresponds to the following energy minimization problem :

min
v∈L2([0,1],V )

E(v) =

∫ 1

0

1

2
|vt|2V dt+D(φ1 · q(0), q(1))

s.t q̇t = vt · qt and q0 = q(0)
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Coupling two types of deformations

Let (w, v) ∈ L2([0, 1],W × V ) be two vector fields and ψ defined by :

ψ̇t = (wt + vt) · ψt s.t ψ0 = id

• Dynamic of qt = ψt(q
(0)) :

q̇t = wt · qt + vt · qt
• Shape registration :

min
(w,v)∈U⊂L2([0,1],W×V )

E(w, v) =

∫ 1

0

Cost(wt, vt)dt+A(q1)

where A : Q→ R is a data attachment term
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Decorrelation with respect to a shape

v w
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Decorrelation with respect to a shape

q1

q2

q

v · q w · q
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Correlation with respect to a shape

We define the correlation with respect to a shape q between a vector field v ∈ V
and a space of vector fields W by

Corrq(v,W ) = ∥w∗∥W
where

w∗ = argmin
w∈W

∥δµq(v)− δµq(w)∥2W′ + λ∥w∥2W

and W ↪→ C1
0 (Rd,R) is a Reproducing Kernel Hilbert Space
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Varifold

Definition

A varifold is a continuous linear form on Ω = {ω : Rd × Sd−1 → R}.
The varifold µq associated to the shape q : X → Rd is defined by :

µq(ω) =

∫
X

ω(x, t⃗(x)) dx

where t⃗ represents a tangent/normal vector to the curve/surface.

A discrete curve can be modeled by a varifold

µq(ω) =
∑

(f1,f2)∈F

∥qf2 − qf1∥Rd ω(c(qf ), t⃗(qf ))

where c(qf ) =
qf1+qf2

2 and
#»
t (qf ) =

qf2−qf1

∥qf2−qf1∥Rd
.
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Representation of a varifold with a gaussian kernel
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Properties

Proposition

Given a RKHS W ↪→ C0
0 (Rd × Sd−1) generated by a kernel kW = kE ⊗ kT and

two curves qa and qb represented by µqa , µqb ∈ W ′, there exists a scalar product
⟨µqa , µqb⟩W′ .

In the following, we will assume kT = 1.

Proposition

The action of a diffeomorphism on a varifold is defined by

(ϕ∗µq)(ω) = µϕ(q)(ω) =
∑

(f1,f2)∈F

∥ϕ(qf2)− ϕ(qf1)∥Rd ω (c(ϕ(qf )))

d
dt

∣∣
t=0

ϕt · q = v · q
↪→ d

dt

∣∣
t=0

(ϕt∗µq) =: δµq(v) : 1st variation of a varifold

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 9 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Properties

Proposition

Given a RKHS W ↪→ C0
0 (Rd × Sd−1) generated by a kernel kW = kE ⊗ kT and

two curves qa and qb represented by µqa , µqb ∈ W ′, there exists a scalar product
⟨µqa , µqb⟩W′ .

In the following, we will assume kT = 1.

Proposition

The action of a diffeomorphism on a varifold is defined by

(ϕ∗µq)(ω) = µϕ(q)(ω) =
∑

(f1,f2)∈F

∥ϕ(qf2)− ϕ(qf1)∥Rd ω (c(ϕ(qf )))

d
dt

∣∣
t=0

ϕt · q = v · q
↪→ d

dt

∣∣
t=0

(ϕt∗µq) =: δµq(v) : 1st variation of a varifold

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 9 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

First variation of a varifold : translation
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First variation of a varifold induced by a vector field

Theorem (Charon, Trouvé 2013)

Let t 7→ ϕt be a flow of diffeomorphism such that ϕ0 = id and ϕ̇t|t=0 = v. For
ω ∈ C1

0 (Rd,R),
d

dt

∣∣∣
t=0

µϕt(q)(ω) =
∑

(f1,f2)∈F

〈
v(qf2)− v(qf1),

qf1 − qf2

∥qf1 − qf2∥

〉
ω(c(qf ))

+ ∥qf1 − qf2∥ ⟨∇xω(c(qf )), c(v(qf ))⟩

Notation : δµq(v) :=
d
dt

∣∣
t=0

µϕt(q)
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Let t 7→ ϕt be a flow of diffeomorphism such that ϕ0 = id and ϕ̇t|t=0 = v. For
ω ∈ C1

0 (Rd,R),
d

dt

∣∣∣
t=0

µϕt(q)(ω) =
∑

(f1,f2)∈F

〈
v(qf2)− v(qf1),

qf1 − qf2

∥qf1 − qf2∥

〉
ω(c(qf ))

+ ∥qf1 − qf2∥ ⟨∇xω(c(qf )), c(v(qf ))⟩

Notation : δµq(v) :=
d
dt

∣∣
t=0

µϕt(q)

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 11 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Decomposition of a varifold
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Influence of the shape

v w
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Influence of the shape

KWδµq(v) KWδµq(w)
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Correlation with respect to a shape

We define the correlation with respect to a shape q between a vector field v ∈ V
and a space of vector fields W by

Corrq(v,W ) = ∥w∗∥W
where

w∗ = argmin
w∈W

∥δµq(v)− δµq(w)∥2W′ + λ∥w∥2W

and W ↪→ C1
0 (Rd,R) is a Reproducing Kernel Hilbert Space
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Influence of σ : k(r) = e−r
2/σ2

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 15 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Influence of σ : k(r) = e−r
2/σ2

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 15 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Influence of σ : k(r) = e−r
2/σ2

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 15 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Influence of σ : k(r) = e−r
2/σ2

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 15 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Influence of σ : k(r) = e−r
2/σ2

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 15 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Dynamic generated by two vector fields

Given W and V two spaces of vector fields, we are interested in the following
matching task :

min
(w,v)∈U⊂L2([0,1],W×V )

E(w, v) =

∫ 1

0

Cost(wt, vt)dt+A(q1)

s.t q̇t = wt · qt + vt · qt

where A : Q → R is a data attachment term.

Different approaches in the litterature :

Multiscale kernel bundle, sum of gaussian kernel : Sommer et al. 2013, Risser
2011

Semidirect product : Bruveris et al. 2012

Hierarchical model : Pierron and Trouvé, 2024
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Modelisation of the dynamic

E1(w, v) =
∫ 1

0
1
2 |wt|2W + 1

2 |vt|
2
V dt+A(q1)

→ v = 0 =⇒ w = 0

E2(w, v) =
∫ 1

0
1
2 |wt|2W + 1

2 |vt|
2
V dt+ γ

∫ 1

0
1
2 Corr

2
qt(vt,W )dt+A(q1)

→ Same problem

→ min(w,v)∈U E2(w, v)

Two models of admissible trajectories U ⊂ L2([0, 1],W × V ) :

Geodesics associated to w 7→ E1(w, v) and v 7→ E1(w, v) (direct model).

Geodesics resulting from a rewriting of the data attachment term (semidirect
model).
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Direct model

Considering the partial gradients of E1(w, v), we define a new problem.

min
pW
0 ,pV

0

E(pW0 , pV0 ) =

∫ 1

0

1

2
|vt|2V +

1

2
|wt|2W dt+ γ

∫ 1

0

1

2
Corr2qt(vt,W )dt+A(q1)

s.t


q̇t = vt · qt + wt · qt
ṗWt = −(∂q(ξ

W
qt (wt) + ξVqt(vt)))

∗pWt
ṗVt = −(∂q(ξ

W
qt (wt) + ξVqt(vt)))

∗pVt
wt = KW ξW∗

qt pWt
vt = KV ξ

V ∗
qt p

V
t

where ξWqt (wt) = wt · qt, ξVqt(vt) = vt · qt and (pWt , pVt ) ∈ T ∗
qtQ× T ∗

qtQ.
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Direct model without decorrelation
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Direct model with decorrelation
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Augmented shape space

Another approach : Extent the shape space to G×Q where G is a
finite-dimensional group of deformations (e.g isometries).

E2(w, v) =

∫ 1

0

1

2
|wt|2W +

1

2
|vt|2V dt+ γ

∫ 1

0

1

2
Corr2qt(vt,W )dt+A(g1, q̃1)

New shape : (g, q̃) = (g, g−1 · q).

Rewriting of the data attachment term :
Ã(g, q̃) = A(g · q̃) = A(q) =⇒ pg ∈ T ∗

gG and p̃ ∈ T ∗
q̃Q.
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Semidirect model (joint work with Thomas Pierron)

Let G be a finite dimensional Lie group and g its Lie algebra.

→ Assumptions :

G acts on DiffCk
0
(Rd) via αg(φ).

G⋉DiffCk
0
(Rd) acts on G×Q : (g, φ) · (h, q) = (gh, g · (φ · q))

Example : If G = SOd(R) , then αR(φ)(x) = R−1φ(Rx) and (R,φ) · q = Rφ(q).
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Semidirect model

New shape : (g, q̃) = (g, g−1q)

New data attachment term : Ã(g, q̃) = A(gq̃)

min
(pg

0 ,p̃0)
E(pg0, p̃0) =

∫ 1

0

1

2
|vt|2V +

1

2
|Xt|2gdt+ γ

∫ 1

0

1

2
Corr2qt(vt, g)dt+ Ã(g1, q̃1)

s.t



ġt = Xt · gt
˙̃qt = didαgt(vt) · q̃t
ṗgt = −(∂gξ

g
gt(Xt))

∗pgt − (∂gξ
V
q̃t
(didαgt(vt)))

∗p̃t
˙̃pt = −(∂qξ

Ṽ
q̃t
(didαgt(vt))

∗p̃t
Xt = Kgξ

g∗
gt p

g
t

vt = KV ξ
V ∗
qt ∂qA

G(g−1
t , qt)

∗p̃t

where ξggt(Xt) = Xtgt and (pgt , p̃t) ∈ T ∗
gtG× T ∗

q̃t
Q :
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Semidirect model without decorrelation
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Semidirect with decorrelation
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Decorrelation from the space of rotations
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Comparison of the geodesics

Semidirect model :

Shape (g, q)
→ (ġt, q̇t) = (Xtgt, Xt · qt + vt · qt)

→
{
Xt = Kgξ

g∗
gt pt with pt ∈ T ∗

qtQ
vt = KV ξ

V ∗
qt pt

Shape (g, q̃) = (g, g−1q)
→ (ġt, ˙̃qt) = (Xtgt, ∂qA

G(g−1
t , qt)ξ

V
qt(vt))

→
{
Xt = Kgξ

g∗
gt p

g
t with pgt ∈ T ∗

gtG

vt = KV ξ
V ∗
qt ∂qA

G(g−1
t , qt)

∗p̃t with p̃t ∈ T ∗
q̃t
Q

Proposition

If p0 = p̃0, then pt = ∂qA
G(g−1

t , qt)
∗p̃t for every t ∈ [0, 1].
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→ (ġt, ˙̃qt) = (Xtgt, ∂qA

G(g−1
t , qt)ξ

V
qt(vt))

→
{
Xt = Kgξ

g∗
gt p

g
t with pgt ∈ T ∗

gtG

vt = KV ξ
V ∗
qt ∂qA

G(g−1
t , qt)

∗p̃t with p̃t ∈ T ∗
q̃t
Q

Proposition

If p0 = p̃0, then pt = ∂qA
G(g−1

t , qt)
∗p̃t for every t ∈ [0, 1].

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 27 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References

Comparison of the geodesics

Semidirect model :
Shape (g, q)
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Comparison of the geodesics

Relation between T ∗
qQ and T ∗

g−1qQ corresponds to the lift of q 7→ AG(g−1, q) on
T ∗Q.
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Comparison of the models

E2(w, v) =

∫ 1

0

1

2
|wt|2W +

1

2
|vt|2V dt+ γ

∫ 1

0

1

2
Corr2qt(vt,W ) dt+A(q1)

Direct model Semidirect model
v = KV ξ

V ∗
q pV v = KV ξ

V ∗
q ∂qA(g

−1, q)∗p̃
w = KW ξW∗

q pW X = Kgξ
g∗
g pg

any deformations isometries + scaling
pW ∈ T ∗Q pg ∈ T ∗G
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To take-home

1st variation of a varifold : δµq(v) :=
d
dt

∣∣
t=0

(φt∗µq) ∈ C1
0 (Rd,R)′

Corrq(v,W ) = ∥w∗∥W
where w∗ = argminw∈W ∥δµq(v)− δµq(w)∥2W′ + λ∥w∥2W

Dynamic generated by W and V :

E2(w, v) =

∫ 1

0

1

2
|wt|2W +

1

2
|vt|2V dt+ γ

∫ 1

0

1

2
Corr2qt(vt,W ) dt+A(q1)

Direct model : Partial gradients of E1

Semidirect model : Extension of the data attachment term
Ã(g, q̃) = A(gq̃) = A(q)

Rayane Mouhli Decorrelation of vector fields May 20th, 2025 30 / 30



LDDMM Decorrelation of vector fields Dynamic generated by two vector fields References
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