Decorrelation of vector fields with first variation of varifolds

Shape seminar

Rayane Mouhli

Joint work with Barbara Gris and Irène Kaltenmark

Université Paris Cité (MAP5) & Sorbonne Université (LJLL)

LDDMM (Beg, Miller, Trouvé, Younes 2005)

Let $v \in L^2([0,1], V)$ be a time-varying vector field where $V \hookrightarrow \mathcal{C}_0^2(\mathbb{R}^d, \mathbb{R}^d)$. The flow of diffeomorphism φ^v generated by v is the unique solution of :

$$\dot{\varphi}_t^v = v_t \circ \varphi_t^v \qquad \text{s.t} \quad \varphi_0^v = \text{id}$$

Shape registration corresponds to the following energy minimization problem :

$$\min_{v \in L^2([0,1],V)} E(v) = \int_0^1 \frac{1}{2} |v_t|_V^2 dt + D(\varphi_1 \cdot q^{(0)}, q^{(1)})$$

s.t $\dot{q}_t = v_t \cdot q_t$ and $q_0 = q^{(0)}$

Coupling two types of deformations

Let $(w,v) \in L^2([0,1], W \times V)$ be two vector fields and ψ defined by :

$$\dot{\psi}_t = (w_t + v_t) \cdot \psi_t$$
 s.t $\psi_0 = \mathrm{id}$

• Dynamic of $q_t = \psi_t(q^{(0)})$:

$$\dot{q}_t = w_t \cdot q_t + v_t \cdot q_t$$

• Shape registration :

$$\min_{(w,v)\in U\subset L^2([0,1],W\times V)} E(w,v) = \int_0^1 \operatorname{Cost}(w_t,v_t)dt + \mathcal{A}(q_1)$$

where $\mathcal{A}:Q\rightarrow\mathbb{R}$ is a data attachment term

References

Decorrelation with respect to a shape

v

w

References

Decorrelation with respect to a shape

References

Decorrelation with respect to a shape

References

Decorrelation with respect to a shape

Correlation with respect to a shape

We define the correlation with respect to a shape q between a vector field $v \in V$ and a space of vector fields W by

$$\operatorname{Corr}_q(v, W) = \|w^*\|_W$$

where

$$w^* = \operatorname*{argmin}_{w \in W} \|\delta\mu_q(v) - \delta\mu_q(w)\|_{\mathcal{W}'}^2 + \lambda \|w\|_W^2$$

and $\mathcal{W} \hookrightarrow C^1_0(\mathbb{R}^d,\mathbb{R})$ is a Reproducing Kernel Hilbert Space

Varifold

Definition

A varifold is a continuous linear form on $\Omega = \{\omega : \mathbb{R}^d \times \mathbb{S}^{d-1} \to \mathbb{R}\}.$ The varifold μ_q associated to the shape $q : X \to \mathbb{R}^d$ is defined by :

$$\mu_q(\omega) = \int_X \omega(x, \vec{t}(x)) \, dx$$

where \vec{t} represents a tangent/normal vector to the curve/surface.

A discrete curve can be modeled by a varifold

$$\mu_q(\omega) = \sum_{(f^1, f^2) \in F} \|q_{f^2} - q_{f^1}\|_{\mathbb{R}^d} \ \omega(c(q_f), \vec{t}(q_f))$$

where
$$c(q_f) = \frac{q_{f^1} + q_{f^2}}{2}$$
 and $\vec{t}(q_f) = \frac{q_{f^2} - q_{f^1}}{\|q_{f^2} - q_{f^1}\|_{\mathbb{R}^d}}$.

Representation of a varifold with a gaussian kernel

Properties

Proposition

Given a RKHS $\mathcal{W} \hookrightarrow C_0^0(\mathbb{R}^d \times \mathbb{S}^{d-1})$ generated by a kernel $k_{\mathcal{W}} = k_E \otimes k_T$ and two curves q_a and q_b represented by $\mu_{q_a}, \mu_{q_b} \in \mathcal{W}'$, there exists a scalar product $\langle \mu_{q_a}, \mu_{q_b} \rangle_{\mathcal{W}'}$.

In the following, we will assume $k_T = 1$.

Proposition

The action of a diffeomorphism on a varifold is defined by

$$(\phi_*\mu_q)(\omega) = \mu_{\phi(q)}(\omega) = \sum_{(f^1, f^2) \in F} \|\phi(q_{f^2}) - \phi(q_{f^1})\|_{\mathbb{R}^d} \ \omega \left(c(\phi(q_f))\right)$$

Properties

Proposition

Given a RKHS $\mathcal{W} \hookrightarrow C_0^0(\mathbb{R}^d \times \mathbb{S}^{d-1})$ generated by a kernel $k_{\mathcal{W}} = k_E \otimes k_T$ and two curves q_a and q_b represented by $\mu_{q_a}, \mu_{q_b} \in \mathcal{W}'$, there exists a scalar product $\langle \mu_{q_a}, \mu_{q_b} \rangle_{\mathcal{W}'}$.

In the following, we will assume $k_T = 1$.

Proposition

The action of a diffeomorphism on a varifold is defined by

$$(\phi_*\mu_q)(\omega) = \mu_{\phi(q)}(\omega) = \sum_{(f^1, f^2) \in F} \|\phi(q_{f^2}) - \phi(q_{f^1})\|_{\mathbb{R}^d} \ \omega \left(c(\phi(q_f))\right)$$

$$\begin{array}{l} \frac{d}{dt}\big|_{t=0}\phi_t \cdot q = v \cdot q \\ \hookrightarrow \frac{d}{dt}\big|_{t=0}(\phi_{t*}\mu_q) =: \delta\mu_q(v) : \text{ 1st variation of a varifold} \end{array}$$

References

First variation of a varifold : translation

First variation of a varifold induced by a vector field

Theorem (Charon, Trouvé 2013)

Let $t \mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0 = \text{id}$ and $\dot{\phi}_t|_{t=0} = v$. For $\omega \in C_0^1(\mathbb{R}^d, \mathbb{R})$,

$$\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}(\omega) = \sum_{(f^1, f^2)\in F} \left\langle v(q_{f^2}) - v(q_{f^1}), \frac{q_{f^1} - q_{f^2}}{\|q_{f^1} - q_{f^2}\|} \right\rangle \,\,\omega(c(q_f)) \\ + \|q_{f^1} - q_{f^2}\| \,\,\langle \nabla_x \omega(c(q_f)), c(v(q_f)) \rangle$$

Notation : $\delta \mu_q(v) := \frac{d}{dt} \Big|_{t=0} \mu_{\phi_t(q)}$

First variation of a varifold induced by a vector field

Theorem (Charon, Trouvé 2013)

Let $t \mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0 = \mathrm{id}$ and $\dot{\phi}_t|_{t=0} = v$. For $\omega \in C_0^1(\mathbb{R}^d, \mathbb{R})$,

$$\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}(\omega) = \sum_{(f^1, f^2)\in F} \left\langle v(q_{f^2}) - v(q_{f^1}), \frac{q_{f^1} - q_{f^2}}{\|q_{f^1} - q_{f^2}\|} \right\rangle \omega(c(q_f)) + \|q_{f^1} - q_{f^2}\| \left\langle \nabla_x \omega(c(q_f)), c(v(q_f)) \right\rangle$$

Notation : $\delta \mu_q(v) := \frac{d}{dt}\Big|_{t=0} \mu_{\phi_t(q)}$

First variation of a varifold induced by a vector field

Theorem (Charon, Trouvé 2013)

Let $t \mapsto \phi_t$ be a flow of diffeomorphism such that $\phi_0 = \text{id}$ and $\dot{\phi}_t|_{t=0} = v$. For $\omega \in C_0^1(\mathbb{R}^d, \mathbb{R})$,

$$\frac{d}{dt}\Big|_{t=0}\mu_{\phi_t(q)}(\omega) = \sum_{(f^1,f^2)\in F} \left\langle v(q_{f^2}) - v(q_{f^1}), \frac{q_{f^1} - q_{f^2}}{\|q_{f^1} - q_{f^2}\|} \right\rangle \ \omega(c(q_f)) + \|q_{f^1} - q_{f^2}\| \left\langle \nabla_x \omega(c(q_f)), c(v(q_f)) \right\rangle$$

Notation : $\delta \mu_q(v) := \frac{d}{dt}\Big|_{t=0} \mu_{\phi_t(q)}$

References

Decomposition of a varifold

Influence of the shape

References

Influence of the shape

 $K_{\mathcal{W}}\delta\mu_q(\boldsymbol{v})$

 $K_{\mathcal{W}}\delta\mu_q(w)$

References

Influence of the shape

References

Influence of the shape

 $K_{\mathcal{W}}\delta\mu_q(\boldsymbol{v})$

 $K_{\mathcal{W}}\delta\mu_q(w)$

Correlation with respect to a shape

We define the correlation with respect to a shape q between a vector field $v \in V$ and a space of vector fields W by

$$\operatorname{Corr}_q(v, W) = \|w^*\|_W$$

where

$$w^* = \operatorname*{argmin}_{w \in W} \|\delta \mu_q(v) - \delta \mu_q(w)\|_{\mathcal{W}'}^2 + \lambda \|w\|_W^2$$

and $\mathcal{W} \hookrightarrow C^1_0(\mathbb{R}^d,\mathbb{R})$ is a Reproducing Kernel Hilbert Space

Dynamic generated by two vector fields 000000000000000 References

Influence of σ : $k(r) = e^{-r^2/\sigma^2}$

Dynamic generated by two vector fields 000000000000000 References

Influence of σ : $k(r) = e^{-r^2/\sigma^2}$

Dynamic generated by two vector fields 000000000000000 References

Influence of σ : $k(r) = e^{-r^2/\sigma^2}$

Dynamic generated by two vector fields 000000000000000 References

Influence of σ : $k(r) = e^{-r^2/\sigma^2}$

Dynamic generated by two vector fields 000000000000000 References

Influence of σ : $k(r) = e^{-r^2/\sigma^2}$

Given W and V two spaces of vector fields, we are interested in the following matching task :

$$\min_{\substack{(w,v)\in U\subset L^2([0,1],W\times V)}} E(w,v) = \int_0^1 \operatorname{Cost}(w_t,v_t)dt + \mathcal{A}(q_1)$$

s.t $\dot{q}_t = w_t \cdot q_t + v_t \cdot q_t$

where $\mathcal{A}:\mathcal{Q}\to\mathbb{R}$ is a data attachment term.

Different approaches in the litterature :

- Multiscale kernel bundle, sum of gaussian kernel : Sommer et al. 2013, Risser 2011
- Semidirect product : Bruveris et al. 2012
- Hierarchical model : Pierron and Trouvé, 2024

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

 $\to v = 0 \Longrightarrow w = 0$

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

 $\to v = 0 \Longrightarrow w = 0$

•
$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

 $\to v = 0 \Longrightarrow w = 0$

•
$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

 $\rightarrow \text{Same problem}$

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

 $\to v = 0 \Longrightarrow w = 0$

•
$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

 \rightarrow Same problem

 $\rightarrow \min_{(w,v)\in U} E_2(w,v)$

•
$$E_1(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \mathcal{A}(q_1)$$

 $\to v = 0 \Longrightarrow w = 0$

•
$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

 $\rightarrow \text{Same problem}$

 $\rightarrow \min_{(w,v)\in U} E_2(w,v)$

Two models of admissible trajectories $U \subset L^2([0,1], W \times V)$:

- Geodesics associated to $w \mapsto E_1(w, v)$ and $v \mapsto E_1(w, v)$ (direct model).
- Geodesics resulting from a rewriting of the data attachment term (semidirect model).

Direct model

Considering the partial gradients of $E_1(w, v)$, we define a new problem.

$$\begin{split} \min_{p_0^W, p_0^V} E(p_0^W, p_0^V) &= \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |w_t|_W^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1) \\ \text{s.t} & \begin{cases} \dot{q}_t &= v_t \cdot q_t + w_t \cdot q_t \\ \dot{p}_t^W &= -(\partial_q(\xi_{q_t}^W(w_t) + \xi_{q_t}^V(v_t)))^* p_t^W \\ \dot{p}_t^V &= -(\partial_q(\xi_{q_t}^W(w_t) + \xi_{q_t}^V(v_t)))^* p_t^V \\ w_t &= K_W \xi_{q_t}^{W*} p_t^W \\ v_t &= K_V \xi_{q_t}^{W*} p_t^V \end{cases} \end{split}$$

where $\xi_{q_t}^W(w_t) = w_t \cdot q_t, \, \xi_{q_t}^V(v_t) = v_t \cdot q_t \text{ and } (p_t^W, p_t^V) \in T_{q_t}^*Q \times T_{q_t}^*Q.$

References

References

References

References

References

References

Dynamic generated by two vector fields

References

References

References

References

Augmented shape space

• Another approach : Extent the shape space to $G \times Q$ where G is a finite-dimensional group of deformations (e.g isometries).

$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(g_1, \tilde{q}_1)$$

- New shape : $(g, \tilde{q}) = (g, g^{-1} \cdot q).$
- Rewriting of the data attachment term : $\tilde{\mathcal{A}}(g, \tilde{q}) = \mathcal{A}(g \cdot \tilde{q}) = \mathcal{A}(q) \Longrightarrow p^{\mathfrak{g}} \in T_g^*G \text{ and } \tilde{p} \in T_{\tilde{q}}^*Q.$

Semidirect model (joint work with Thomas Pierron)

Let G be a finite dimensional Lie group and \mathfrak{g} its Lie algebra.

 \rightarrow Assumptions :

- G acts on $\operatorname{Diff}_{C_0^k}(\mathbb{R}^d)$ via $\alpha_g(\varphi)$.
- $G \ltimes \operatorname{Diff}_{C_0^k}(\mathbb{R}^d)$ acts on $G \times Q$: $(g, \varphi) \cdot (h, q) = (gh, g \cdot (\varphi \cdot q))$

Example : If $G = SO_d(\mathbb{R})$, then $\alpha_R(\varphi)(x) = R^{-1}\varphi(Rx)$ and $(R,\varphi) \cdot q = R\varphi(q)$.

Semidirect model

- New shape : $(g,\tilde{q})=(g,g^{-1}q)$
- New data attachment term : $\tilde{\mathcal{A}}(g,\tilde{q}) = \mathcal{A}(g\tilde{q})$

$$\min_{(p_0^{\mathfrak{g}}, \tilde{p}_0)} E(p_0^{\mathfrak{g}}, \tilde{p}_0) = \int_0^1 \frac{1}{2} |v_t|_V^2 + \frac{1}{2} |X_t|_{\mathfrak{g}}^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, \mathfrak{g}) dt + \tilde{\mathcal{A}}(g_1, \tilde{q}_1)$$

s.t
$$\begin{cases} \dot{g}_t &= X_t \cdot g_t \\ \dot{\tilde{q}}_t &= d_{\mathrm{id}} \alpha_{g_t}(v_t) \cdot \tilde{q}_t \\ \dot{\tilde{p}}_t^{\mathfrak{g}} &= -(\partial_g \xi_{g_t}^{\mathfrak{g}}(X_t))^* p_t^{\mathfrak{g}} - (\partial_g \xi_{\tilde{q}_t}^V(d_{\mathrm{id}} \alpha_{g_t}(v_t)))^* \tilde{p}_t \\ \dot{\tilde{p}}_t &= -(\partial_q \xi_{\tilde{q}_t}^V(d_{\mathrm{id}} \alpha_{g_t}(v_t))^* \tilde{p}_t \\ X_t &= K_{\mathfrak{g}} \xi_{g_t}^{\mathfrak{g}*} p_t^{\mathfrak{g}} \\ v_t &= K_V \xi_{q_t}^{q_*} \partial_q A^G(g_t^{-1}, q_t)^* \tilde{p}_t \end{cases}$$

where $\xi_{g_t}^{\mathfrak{g}}(X_t) = X_t g_t$ and $(p_t^{\mathfrak{g}}, \tilde{p}_t) \in T_{g_t}^* G \times T_{\tilde{q}_t}^* Q$:

References

References

References

References

References

Dynamic generated by two vector fields

References

References

References

Decorrelation from the space of rotations

0.5 1.0 1.5

Comparison of the geodesics

Semidirect model :

Comparison of the geodesics

Semidirect model :

• Shape
$$(g, q)$$

 $\rightarrow (\dot{g}_t, \dot{q}_t) = (X_t g_t, X_t \cdot q_t + v_t \cdot q_t)$
 $\rightarrow \begin{cases} X_t &= K_g \xi_{g_t}^{g_*} p_t \\ v_t &= K_V \xi_{q_t}^{V*} p_t \end{cases}$

with $p_t \in T^*_{q_t}Q$

Comparison of the geodesics

Semidirect model :

• Shape
$$(g,q)$$

 $\rightarrow (\dot{g}_t, \dot{q}_t) = (X_t g_t, X_t \cdot q_t + v_t \cdot q_t)$
 $\rightarrow \begin{cases} X_t &= K_g \xi_{g_t}^{g_t} p_t \\ v_t &= K_V \xi_{q_t}^{V*} p_t \end{cases}$

with
$$p_t \in T^*_{q_t}Q$$

$$\begin{split} \bullet \ & \text{Shape} \ (g,\tilde{q}) = (g,g^{-1}q) \\ & \rightarrow (\dot{g}_t,\dot{\tilde{q}}_t) = (X_tg_t,\partial_q A^G(g_t^{-1},q_t)\xi_{q_t}^V(v_t)) \\ & \rightarrow \begin{cases} X_t &= K_\mathfrak{g}\xi_{g_t}^{\mathfrak{g}}p_t^\mathfrak{g} \\ v_t &= K_V\xi_{q_t}^{\mathfrak{g}}*\partial_q A^G(g_t^{-1},q_t)^*\tilde{p}_t \end{cases} & \text{ with } p_t^\mathfrak{g} \in T_{\tilde{q}_t}^*G \\ & \text{ with } \tilde{p}_t \in T_{\tilde{q}_t}^*Q \end{cases}$$

Comparison of the geodesics

Semidirect model :

• Shape
$$(g,q)$$

 $\rightarrow (\dot{g}_t, \dot{q}_t) = (X_t g_t, X_t \cdot q_t + v_t \cdot q_t)$
 $\rightarrow \begin{cases} X_t &= K_{\mathfrak{g}} \xi_{g_t}^{\mathfrak{g}*} p_t \\ v_t &= K_V \xi_{q_t}^{V*} p_t \end{cases}$ with $p_t \in T_{q_t}^* Q$

$$\begin{split} \bullet & \text{Shape } (g, \tilde{q}) = (g, g^{-1}q) \\ & \rightarrow (\dot{g}_t, \dot{\tilde{q}}_t) = (X_t g_t, \partial_q A^G(g_t^{-1}, q_t) \xi_{q_t}^V(v_t)) \\ & \rightarrow \begin{cases} X_t &= K_\mathfrak{g} \xi_{g_t}^{\mathfrak{g}*} p_t^{\mathfrak{g}} \\ v_t &= K_V \xi_{q_t}^{V*} \partial_q A^G(g_t^{-1}, q_t)^* \tilde{p}_t \end{cases} & \text{ with } p_t^{\mathfrak{g}} \in T_{\tilde{q}_t}^* G \end{cases}$$

Proposition

If
$$p_0 = \tilde{p}_0$$
, then $p_t = \partial_q A^G (g_t^{-1}, q_t)^* \tilde{p}_t$ for every $t \in [0, 1]$.

Comparison of the geodesics

Relation between T^*_qQ and $T^*_{g^{-1}q}Q$ corresponds to the lift of $q\mapsto A^G(g^{-1},q)$ on $T^*Q.$

Comparison of the models

$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

Direct model	Semidirect model
$v = K_V \xi_q^{V*} p^V$	$v = K_V \xi_q^{V*} \partial_q A(g^{-1}, q)^* \tilde{p}$
$w = K_W \bar{\xi}_q^{W*} p^W$	$X = K_{\mathfrak{g}} \xi_g^{\mathfrak{g}*} p^{\mathfrak{g}}$

_

Comparison of the models

$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

Direct model	Semidirect model
$v = K_V \xi_q^{V*} p^V$	$v = K_V \xi_q^{V*} \partial_q A(g^{-1}, q)^* \tilde{p}$
$w = K_W \hat{\xi}_q^{W*} p^W$	$X = K_{\mathfrak{g}} \xi_{g}^{\mathfrak{g}*} p^{\mathfrak{g}}$
any deformations	isometries $+$ scaling

Comparison of the models

$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

Direct model	Semidirect model
$v = K_V \xi_q^{V*} p^V$	$v = K_V \xi_q^{V*} \partial_q A(g^{-1}, q)^* \tilde{p}$
$w = K_W \hat{\xi}_q^{W*} p^W$	$X = K_{\mathfrak{g}} \xi_{g}^{\mathfrak{g}*} p^{\mathfrak{g}}$
any deformations	isometries $+$ scaling
$p^W \in T^*Q$	$p^{\mathfrak{g}} \in T^*G$

To take-home

- 1st variation of a varifold : $\delta \mu_q(v) := \frac{d}{dt} \Big|_{t=0} (\varphi_{t*} \mu_q) \in C^1_0(\mathbb{R}^d, \mathbb{R})'$
- $\operatorname{Corr}_{q}(v, W) = \|w^{*}\|_{W}$ where $w^{*} = \operatorname{argmin}_{w \in W} \|\delta \mu_{q}(v) - \delta \mu_{q}(w)\|_{W'}^{2} + \lambda \|w\|_{W}^{2}$
- $\bullet\,$ Dynamic generated by W and V :

$$E_2(w,v) = \int_0^1 \frac{1}{2} |w_t|_W^2 + \frac{1}{2} |v_t|_V^2 dt + \gamma \int_0^1 \frac{1}{2} \operatorname{Corr}_{q_t}^2(v_t, W) dt + \mathcal{A}(q_1)$$

- Direct model : Partial gradients of E_1
- Semidirect model : Extension of the data attachment term $\tilde{\mathcal{A}}(g,\tilde{q})=\mathcal{A}(g\tilde{q})=\mathcal{A}(q)$

- Nicolas Charon and Alain Trouvé. The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal on Imaging Sciences, 6(4):2547–2580, January 2013.
- [2] Thomas Pierron and Alain Trouvé. The graded group action framework for sub-riemannian orbit models in shape spaces, 2024.
- [3] Sylvain Arguillère. The general setting for shape analysis, 2015.
- [4] Martins Bruveris, Laurent Risser, and François-Xavier Vialard. Mixture of kernels and iterated semidirect product of diffeomorphisms groups. *Multiscale Modeling amp; Simulation*, 10(4):1344–1368, January 2012.
- [5] M. Bruveris, F. Gay-Balmaz, D. D. Holm, and T. S. Ratiu. The momentum map representation of images. *Journal of Nonlinear Science*, 21(1):115–150, September 2010.
- [6] Mirza Faisal Beg, Michael Miller, Alain Trouvé, and Laurent Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. *International Journal of Computer Vision*, 61:139–157, 02 2005.
- [7] Laurent Risser, François-Xavier Vialard, Robin Wolz, Darryl Holm, and Daniel Rueckert. Simultaneous fine and coarse diffeomorphic registration: Application to atrophy measurement in alzheimer's disease. volume 13, pages 610–7, 09 2010.
- [8] Irene Kaltenmark, Benjamin Charlier, and Nicolas Charon. A general framework for curve and surface comparison and registration with oriented varifolds. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.
- Barbara Gris, Stanley Durrleman, and Alain Trouvé. A sub-Riemannian modular approach for diffeomorphic deformations. In 2nd conference on Geometric Science of Information, Paris-Saclay, France, October 2015.
- [10] Stefan Horst Sommer, Francois Bernard Lauze, Mads Nielsen, and Xavier Pennec. Sparse multi-scale diffeomorphic registration: the kernel bundle framework. *Journal of Mathematical Imaging and Vision*, 46(3):292–308, 2013.